Genome Sequence of the Anterograde-Spread-Defective Herpes Simplex Virus 1 Strain MacIntyre

Moriah L. Szpara, Yolanda R. Tafuri, Lance Parsons, Jacob T. Shreve, Esteban A. Engel, L. W. Enquist

Department of Molecular Biology, the Princeton Neuroscience Institute and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA

We used paired-end Illumina deep sequencing and de novo assembly to determine the genome sequence of herpes simplex virus 1 (HSV-1) strain MacIntyre (aka McIntyre). The MacIntyre strain originated from the brain of a patient with lethal HSV encephalitis and has a unique limitation in its neuronal spread, moving solely in the retrograde direction.

Received 29 September 2014 Accepted 8 October 2014 Published 13 November 2014

We used Illumina deep sequencing and de novo assembly to determine the genome sequence of herpes simplex virus 1 (HSV-1) strain MacIntyre. The MacIntyre strain originated from the brain of a patient with lethal HSV encephalitis. After isolation, MacIntyre was passaged through multiple cell types and species. Dowdle deposited this strain at the ATCC (VR-539), from which we received our stock. Later studies revealed a severe defect in the anterograde spread of HSV-1 MacIntyre in the central nervous systems in rat, mouse, and primate models. Three genes, UL46, US7, and US9, contained new stop codon positions compared to those of the HSV-1 reference strain 17. We anticipate that the majority of HSV MacIntyre proteins have coding variations compared to those of the HSV-1 reference strain 17. We also found that the HSV-1 MacIntyre genome contains bystander variations and one or more mutations that directly affect its limited-spread phenotype.

A frequent comparator for HSV-1 is the distantly related swine alphaherpesvirus pseudorabies virus (PRV) (30, 31). HSV-1 MacIntyre resembles the PRV vaccine strain Bartha in terms of its defect in anterograde spread, extensive passage history, and attenuated virulence (32, 33). We recently sequenced the full genome of PRV strain Bartha, allowing us to explore how these two viruses converged on the same phenotype of defective spread in neurons (16). The anterograde spread defect of PRV-Bartha results from loss of three proteins, gE (US6), gI (US7), and US9. The loss of US9 alone strongly affects sorting into neuronal axons (34–37). Our sequence data reveal that HSV-1 MacIntyre contains a single nucleotide polymorphism in US9, which creates a premature stop codon (C172T or R58Stop). We have confirmed this by PCR and Western blot analysis (data not shown). Curiously, an identical US9 mutation was previously described in two additional unrelated HSV-1 strains (38, 39). Further characterization of this and other differences in HSV-1 MacIntyre is under way with an aim of illuminating the mechanisms of neuronal sorting and egress for HSV-1.

Nucleotide sequence accession number. The HSV-1 MacIntyre strain genome sequence has been deposited at GenBank under the accession no. KM222720.

ACKNOWLEDGMENTS

This work was supported by the Virus Pathogens Resource (ViPR), a Bioinformatics Resource Center (BRC) funded by the NIAID. Additional support was provided by a Center Grant (NIH/NIGMS P50 GM071508) and NIH grant P40 RR 018604 (to L.W.E. and M.L.S.). E.A.E. is a Pew Latin American Fellow in the Biomedical Sciences (grant 2010-000225-002), supported by the Pew Charitable Trusts.

REFERENCES


