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We report here the protective effect against piscirickettsiosis elicited in fish by a mixture of recombinant proteins. A comparative genomics
trategy was used on a genomic library of Piscirickettsia salmonis in order to select optimal candidates for a recombinant subunit vaccine to
rotect fish from rickettsial septicaemia (SRS). Based on this information, 15 P. salmonis ORFs encoding heat shock proteins, virulence factors,
embrane bound and other surface exposed antigens, were isolated and expressed. Seven of the most promising antigens were formulated in

hree mixtures (V1–V3) containing two or three recombinant proteins each and injected into salmon to test their protective efficacy. Two of the
hree formulations (V1, V2) elicited a strong protective response in a challenge against the pathogen, which was coincident with the humoral
esponse against the corresponding recombinant proteins present in each formulation. V1, formulated with recombinant chaperonines Hsp60,
sp70 and flagellar protein FlgG of P. salmonis achieved the highest level of protection with a relative percent survival (RPS) of 95%.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

Piscirickettsia salmonis is the etiological agent of the
almonid rickettsial septicaemia (SRS) or piscirickettsiosis.
his bacterium, isolated in 1989 from a moribund coho
almon from a saltwater net pen site in the south of Chile,
as the first Rickettsia-like organism recognized as a fish
athogen [1]. Since then, the disease has also been reported
o affect Atlantic salmon, the main salmonid species cul-
ured in Chile, as well as rainbow trout and other farmed
almon species. Outbreaks of SRS have also emerged among
arm-raised salmon in Canada, Norway and Ireland, how-
ver, mortalities have not been as high as those in Chile [2].

∗ Corresponding author. Tel.: +56 2 239 8969; fax: +56 2 237 2259.
E-mail address: pvalenzu@bionova.cl (P.D.T. Valenzuela).

The pathogen has also been isolated from sea bass in Califor-
nia and Piscirickettsia-like organisms have been identified in
Hawaiian tilapia and several other fish species [3], indicating
that the disease is not only confined to salmonids.

The pathogen is a gram-negative, obligate intracellular
bacterium. It is pleiomorphic, predominantly coccoid in
shape and ranging in diameter from 0.5 to 1.5 �m. Molecular
phylogenetic analysis based on sequencing of the 16S rRNA
gene placed P. salmonis in a new family of Piscirickettsiae
within the class of �-proteobacteria, most closely related to
Coxiella, Francisella and Legionella [4]. P. salmonis pro-
duces a systemic infection in fish targeting predominantly
the kidney, liver, spleen, intestine, brain, ovary and gills. Fish
begin to die 6–12 weeks after their transfer to seawater net
pens in fall and spring. The Chilean aquaculture industry
attributes annual losses of US$ 150 million to SRS [5], having
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an important effect on the economy of a country positioned as
the second largest exporter of salmon and trout after Norway.

Although P. salmonis is sensitive in vitro to many antibi-
otics commonly used to control other infectious diseases in
fish, infected salmonids respond poorly to this treatment,
due perhaps to an insufficient concentration of antibiotics
within the host cell to kill the pathogen [2]. The lack of
effective treatments to control piscirickettsiosis has empha-
sized the need to develop techniques for disease prevention.
Management of the disease is based on several husbandry
practices including the application of immunostimulants of
unproven efficacy and the control of vertical transmission
by an expensive selection procedure during reproduction.
Although vaccines made of inactivated bacteria have been
successfully used to control certain bacterial disease in fish
[6], preparations based on P. salmonis bacterins have not
yielded significant protection against SRS [5,7]. This might
be related to the loss of important surface antigens during
both, culture of the pathogen in animal cell lines, as well as in
the inactivation process. A recombinant subunit vaccine is an
interesting alternative. Since its first application [8], recom-
binant DNA technology has been considered as a valuable
technology for development of vaccines against many human
and animal pathogens, including Rickettsiae [9], a class of
intracellular bacteria related to Piscirickettsia. In addition,
the potential use of recombinant vaccines in aquaculture has
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mented with non-essential amino acids, glutamine and 5%
fetal bovine serum (GIBCO BRL), in T175 flasks at 16 ◦C.

2.2. Bacterial strains and plasmids

Escherichia coli strains NovaBlue and BL21(DE3), used
for cloning and expression, respectively, were obtained from
Novagen. P. salmonis Bios-007 was isolated in 1995 from
the liver of a sick fish obtained at the location of Calbuco, in
the South of Chile. To grow P. salmonis, frozen inoculates of
about 1 × 108 bacteria/mL, were brought to room tempera-
ture, added to flasks containing confluent CHSE-214 cells and
incubated overnight at 16 ◦C. The medium was then replaced
by fresh complete MEM supplemented with non-essential
amino acids, glutamine and FBS 5% and cultured for 10–14
days at 16 ◦C. Periodic checks of the degree of cytolysis were
performed. Cultures were considered ready for harvesting
when nearly 100% of the cells were lysed. Cells adhered to
the flask walls were scraped, centrifuged twice at 150 × g at
10 ◦C and the second supernatant saved as the semipurified
fraction of P. salmonis. Further purification was performed
according to Jamett et al. [12].

The plasmids pET32a (Novagen) and pGEMT (Promega)
were propagated in NovaBlue cells in medium LB with
100 �g/mL ampicillin at 37 ◦C. E. coli BL21(DE3) cells
transformed by pET32a were grown in LB with 100 �g/mL
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een discussed extensively [10,11]. Recently a recombinant
accine has been introduced into the market. This product
s based on the 17 kDa OspA outer surface lipoprotein from
. salmonis fused in tandem to T cell epitopes from tetanus
oxin and measles virus. This preparation attained an 83%
PS when tested in coho salmon [7]. However, there is a
eed for further improvement specially regarding the cre-
tion of multivalency as a mean to insure wider protection
gainst emerging isolates.

The present work describes the use of a predictive
enomics strategy to select as vaccine targets P. salmonis pro-
eins previously identified as virulence factors and protective
ntigens in other microorganisms. We postulate that the pres-
nce of various recombinant antigens in a treatment might
mprove the efficacy of the vaccine. Moreover, the inclusion
f antigens conserved through species could have a cross-
rotective effect among different bacterial pathogens. Our
fforts have been directed to express recombinant heat shock
roteins and surface antigens of P. salmonis as antigens for an
ffective vaccine. We report here the protective effect against
iscirickettsiosis elicited in fish by a mixture of recombinant
roteins.

. Materials and methods

.1. Cell culture

The Chinook salmon embryo cell line CHSE-214 (ATCC
681) was cultured in complete MEM (Gibco BRL) supple-
mpicillin.

.3. Cloning of P. salmonis antigen coding regions

Genomic DNA was extracted from P. salmonis as
escribed previously [13]. Predicted coding regions of
elected antigens of P. salmonis were isolated by PCR
mplification using specific primers (Table 1) based on
he sequence information from the P. salmonis genomic
ibrary obtained in our laboratory. Amplified products
ere purified using a kit from Qiagen, ligated to pGEMT

nd used to transform NovaBlue competent cells. Positive
lones were selected by blue/white screening using lacZ �-
omplementation.

.4. DNA analysis and sequencing

Plasmid DNA was purified using a kit from Qiagen. DNA
amples and restriction endonuclease digests were analyzed
y electrophoresis in agarose gels. The pGEMT constructs
ere sequenced with the Big Dye Terminator Cycle Sequenc-

ng V.2.0 kit (Applied Biosystem Inc.) based on the procedure
f Sanger et al. [14] using a 310 Genetic Analyzer (Applied
iosystem Inc.).

.5. Production of recombinant proteins in E. coli

The coding regions of the selected genes were amplified
y PCR using specific primers with restriction endonucle-
se sites at their 5′ ends. The amplified coding regions were
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Table 1
Oligonucleotides used as primers

Gene Forward primer Reverse primer

Hsp10 5′-ggcgaattcatgaaaatccgtccattacat-3′ 5′-cggctcgaggaattaatcttcaacgactgc-3′
Hsp16 5′-cgcgatatcatgagtcactttaatttatccc-3′ 5′-gccctcgagctatgccatttttttatctacta-3′
Hsp60 5′-gacggatccggagatataagaatgtcagca-3′ 5′-tatgaattcttaaccgcccatgccacccat-3′
Hsp70 5′-tatgaattcatggctgaaattattggtattg-3′ 5′-gtactcgagctaaacttcttcaaactcagcatc-3′
MltB 5′-gacgaattcatgagacgatcttattggcta-3′ 5′-gacctcgagtattttaagagccttttgagtg-3′
Slt70 5′-caggaattcgacataatgccatactacactt-3′ 5′-cagctcgagttaaacacgcctaattccagcatt-3′
TbpB 5′-cttggatccatgaaacttaccataggcttgattgg-3′ 5′-cttaagcttctcactttaattgcagcagc-3′
31 kDa protein 5′-caggaattcgttatggcagcaccacat-3′ 5′-gctctcgagatgccttagtttaaccccgg-3′
VacB 5′-ggaagatatcatggtaaaaaagaagacaacaag-3′ 5′-ggttggatcctaagctcttttgaatgtttcattt-3′
Omp27 (kDa) 5′-cagggatccgccatgagaagcaaacaccc-3′ 5′-caggaattcatggggtgagtttcttgtg-3′
Mp13 (kDa) 5′-ctcggatccctaattatgcagttttctcgtg-3′ 5′-gacgaattcccaagtattattgtatcagtagt-3′
FlgF 5′-gcagga tccgtgatcatggaccatggaatt-3′ 5′-tgcgaattcttaaatttgcataatgcgtaccg-3′
FlgG 5′-cagggatccaggattatgattccagcattat -3′ 5′-ctggaatcctagttatatcgtctgatttaagaa-3′
FlgH 5′-gacggatccaatattaagatgaggagtttatgg-3′ 5′-ctggaattcctagaatggccatatcacact-3′
FlaA 5′-cagggatccatggaaggaagagggcgtactga-3′ 5′-cacgaattcctagataagtgatagtacggc-3′

cloned into the expression vector pET32a in frame with
the thioredoxin gene of E. coli and a histidine-tag domain.
E. coli BL21(DE3) competent cells were transformed with
the constructs and expression of recombinants was induced
by incubation in LB-ampicillin supplemented with 1 mM
IPTG. Recombinant proteins used for immune analysis were
purified by a Ni-agarose column (Qiagen). For vaccine for-
mulations, recombinant proteins were used as semipurified
preparations either as inclusion bodies or soluble protein
fractions obtained by centrifugation of sonicated bacteria at
20,000 × g for 15 min. Protein concentration was measured
using the Micro BCA kit (Pierce). Protein analysis was per-
formed in PAGE-SDS gels according to Laemmli [15].

2.6. Monoclonal antibody production

Two-month-old female BALB/c mice were injected
intraperitoneally at 3 weeks intervals with three doses of
50 �g of purified recombinant proteins diluted in PBS and
emulsified with Freund adjuvant. Ten days after the last injec-
tion, the animals were bled from the tail to obtain serum. The
humoral response against the recombinant proteins was deter-
mined by an ELISA test [12]. To produce hybridoma, spleen
cells from the immunized mice were isolated and fused with
NS0/2 mouse myeloma cells [16].
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sage of isolate Bios-007. A control group, injected with the
saline solution used to resuspend the pathogen, was also
included. The injected fish of each group were distributed in
two tanks of 1000 L (10 fish of each dose per tank) and main-
tained at 13 ◦C under controlled conditions of oxygenation,
feeding and water flow until mortalities ended. Cumulative
mortalities at each dose were plotted and the LD50 was deter-
mined [18]. SRS was confirmed by histopathological analysis
of dead fish.

2.8. Recombinant vaccine trial

Three experimental formulations containing two or three
recombinant proteins were prepared. Each mixture was emul-
sified with one volume of incomplete Freund adjuvant to
obtain a 1:1 oil in water preparation with a final concen-
tration of 50 �g/mL of each protein. Salmo salar with an
average weight of 18 g were tagged for group identification.
Three groups of 104 fish each were injected intraperitoneally
with 0.2 mL of each vaccine preparation that contained 10 �g
of each recombinant protein. The vaccinated fish were ran-
domly distributed in eight tanks with 13 fish of each group per
tank. Control fish injected with saline and incomplete adju-
vant were also included in the same tanks. Salmon were held
at 13 ◦C under controlled conditions of oxygenation, feed-
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.7. Determination of the lethal dose 50 (LD50)

Two hundred and fifty fish (Salmo salar) with an aver-
ge weight of 18 g were tagged and kept 2 weeks in fresh
ater under controlled conditions to recover before being

hallenged. The fish were randomly distributed in 10 groups
f 20 fish. Fish from each group were injected intraperi-
oneally with a 200 �L suspension of increasing doses of P.
almonis from 1 × 102 to 1 × 108 bacteria titered as described
reviously [17]. Doses were prepared by serial dilutions of
emipurified P. salmonis corresponding to the eleventh pas-
ng and water flow for 7 weeks post-vaccination (624 degree
ays).

For challenge, control and vaccinated fish were injected
ntraperitoneally with 0.2 mL of P. salmonis. The fish from
our tanks (208 fish) were injected with a dose of P. salmo-
is equivalent to 2 × LD50 and an identical number of fish
rom other four tanks were injected with a dose of bacte-
ia equivalent to 8 × LD50. Fish of each tank injected with
× LD50 were transferred to each tank of fish injected with
× LD50 in order to have four replicas (26 fish of each group
er tank) each under the same feeding and environmental
onditions.
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2.9. Calculation of the relative percent survival (RPS)

The protection elicited by the vaccine formulations was
determined by comparing the cumulative mortality of treated
and control groups. The RPS, was calculated according to the
equation: RPS = [1 − (% mortality of test group/% mortality
of control group)] × 100 [19].

2.10. Western blot analysis

Recombinant proteins were separated by PAGE-SDS gel
electrophoresis and transferred to nitrocellulose. Total pro-
tein (30–40 �g) obtained from P. salmonis were analyzed
with a proper dilution of the monoclonal antibodies and
developed with an anti-mouse IgG conjugated with alkaline
phosphatase. The monoclonal antibodies used against FlgG,
FlgF, FlaA, Omp27, Hsp60, Hsp70, VacB, 31 kDa protein and
TbpB were 4H8/G8, 7H11/H9, 5A4/G12, 4G1/00, 5EIO/G7,
3D5/A11, 5F7/E2, 5611/H11 and 7E1/D6, respectively. To
analyze the immune response of vaccinated salmon, nitro-
cellulose membranes containing 1 �g of the corresponding
recombinant protein were incubated with a 1:200 dilution of
salmon serum. Blots were then incubated with an anti-salmon
IgM monoclonal antibody and developed with an anti-mouse
IgG conjugated with alkaline phosphatase.
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of the contig sequences by comparison with other bacterial
genomes has permitted the prediction of nearly 1500 genes
of which 90% could be assigned to a known function.

Vaccine candidate were selected by searching for P. salmo-
nis genes that encode proteins with sequence similarity to
virulence factors involved in host-pathogen interactions or
immunoreactive antigens that are secreted or located at the
surface of other known pathogens. More than 40 genes were
selected by these criteria, of which 15 were selected for fur-
ther analysis (Table 2). These include the virulence factor
VacB [20]; structural components of a putative flagellar struc-
ture such as FlgG, FlgH, FlgF and FlaA [21,22]; members
of the heat shock family Hsp60, Hsp70, Hsp10 and Hsp16,
which are known to be strong immunogenic determinants
[23]; the membrane proteins Mp13 [24], Omp27 [25], 31 kDa
[26], the transferrin binding protein TbpB and the membrane
lytic transglycosylase MltB [27] and its soluble counterpart
Slt70 [28].

3.2. Cloning and expression of recombinant P. salmonis
proteins

In order to isolate the complete coding region of the
15 selected genes by PCR, specific primers were designed
based on the genomic sequences. Some open reading frames
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. Results

.1. Identification of P. salmonis proteins as potential
accine candidates

About 80% of the genome of P. salmonis has been
equenced in our laboratory. Approximately 20,000 individ-
al sequences were obtained in both directions and assembled
n 2143 contigs from a random library of genomic fragments.
lthough the genomic information is not complete, analysis

able 2
elected vaccine candidates

ene Protein

sp10 Heat shock protein
sp16 Heat shock protein
sp60 Heat shock protein
sp70 Heat shock protein
ltB Periplasmic membrane lytic transglycosylase anch

the outer membrane
lt70 Periplasmic soluble lytic transglycosylase
bpB Transferrin binding protein localized in the outer m
1 kDa protein Outer membrane protein
acB Cytoplasmic virulence factor B
mp27 kDa Outer membrane protein
p13 kDa Membrane protein

lgF Rod structure of flagellar basal body
lgG Rod structure of flagellar basal body
lgH L ring of flagellar basal body
laA C-terminus of flagellin, subunit of the extracellula

filament
ORFs) were completely contained within a single contig and
hey were easily isolated and sequenced. Other ORFs were
ontained in two or more contigs and were isolated by PCR
ith primers designed according to the sequence flanking the
issing regions. The conserved organization of some genes

n clusters was particularly useful to isolate genes whose
equences were only partially represented in a single con-
ig. Using these strategies, the 15 chosen ORFs were isolated,
loned into pGEMT and their sequences confirmed. The cod-
ng regions of each gene were then subcloned in frame with
he E. coli thioredoxin (Trx) coding region present in the
rokaryotic expression vector pET32a. Fusion proteins were

Basis for selection

Cellular and humoral response [23]
Cellular and humoral response [23]
Cellular and humoral response [23]
Cellular and humoral response [23]
Strong cellular and humoral response in N. meningitides [27]

Highly expressed in the periplasm [28]
ne Strong cellular and humoral response in N. meningitides [27]

Immunogenic protein in B. abortus [26]
Virulence factor [20]
Extracellular antigen [25]
Defense against F. turalensis [24]
Flagellum is highly immunogenic [21,22]
Flagellum is highly immunogenic [21,22]
Flagellum is highly immunogenic [21,22]

lar Flagellum is highly immunogenic [21,22]
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Fig. 1. SDS-PAGE analysis of purified P. salmonis recombinant proteins expressed in E. coli: (1) molecular weight markers; (2) Trx-Hsp10; (3) Trx-Hsp16;
(4) Trx-Hsp60; (5) Trx-Hsp70; (6) Trx-Omp-C; (7) Trx-FlaA-C; (8) Trx-FlgF; (9) Trx-FlgG; (10) Trx-FlgH; (11) Trx-Mp13; (12) Trx-31 kDa protein; (13)
Trx-TbpB-N; (14) Trx-MltB-N; (15) Trx-MltB-C; (16) Trx-Slt70-N; (17) Trx-Slt70-C; (18) Trx-VacB-N; (19) Trx-VacB-C. N and C refer to amino and carboxyl
domains, respectively.

expressed in BL21(DE3) cultures under the control of T7Lac
promoter upon induction with IPTG. The results are shown
in Fig. 1. Most recombinant proteins were expressed as inclu-
sion bodies with the exception of Trx-Hsp10, Trx-Hsp16 and
Trx-Hsp70, which were soluble [29,30]. The ORFs of TbpB,
VacB, Omp27, Slt70, FlaA and MltB were expressed either
partially or in two halves [31].

3.3. Expression of the selected proteins in P. salmonis

It was of interest to study if the antigen candidates
are expressed by the pathogen during infection. Therefore,
extracts of P. salmonis growing in CHSE-214 cells were
analyzed by Western blot for the presence of the native pro-
teins. Specific monoclonal antibodies were used to detect
the presence of the selected proteins in these extracts. As
seen in Fig. 2, strong signals corresponding to Hsp60 and
Hsp70 were found in extracts of P. salmonis. Less abun-
dant, but clearly detected, are the proteins 31 KDa, TbpB
and VacB. Although flagellar proteins FlgF, FlgG, flagellin

F
l
b
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H

and Omp27 were shown to be highly immunogenic in mice,
monoclonal antibodies obtained against these recombinant
proteins did not detect their presence in the bacterial extracts
(results not shown). The level of expression of Slt70, Hsp10,
Hsp16, FlgH, Mp13 and MltB in P. salmonis extracts was not
analyzed due to the lack of monoclonal antibodies. Sera of
mice immunized with these proteins were not used to ana-
lyze expression in bacterial extracts since they also presented
reactivity against the thioredoxin moiety of the fusion pro-
teins.

3.4. Recombinant vaccine trial

To measure the protective effect elicited by the recom-
binant proteins, formulations containing two or three of the
most promising candidate proteins were prepared to be tested
in a challenge with P. salmonis. Analysis of these mixtures
by gel electrophoresis is shown in Fig. 3. The first group
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ig. 2. Western blot analysis of antigens present in P. salmonis. Gel was
oaded with 30–40 �g of total P. salmonis protein and the blotted mem-
ranes were analyzed with a 1:200 dilution of each monoclonal antibody:
1) molecular weight markers; (2–6) monoclonal antibody against Hsp60,
sp70, VacB, 31 kDa protein and TbpB, respectively.
ig. 3. SDS-PAGE analysis of recombinant vaccine formulations. Oil in
ater formulations containing 10 �g of each recombinant protein were used

o immunize fish. MW Std: molecular weight markers; V1: formulation
ontaining partially purified Trx-Hsp70 (a), Trx-Hsp60 (b) and Trx-FlgG (c).
2: formulation containing partially purified Trx-TbpB-N (d), Trx-MltB-C

e), Trx-MltB-N (f). V3: formulation containing partially purified Trx-FlaA-
(g) and Trx-Omp-C (h).
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Fig. 4. Protection of recombinant vaccine against SRS in Atlantic salmon. (A) Cumulative mortality of control and immunized fish challenged with a dose
of 8 × LD50 of P. salmonis. (B) Cumulative mortality of control and immunized fish challenged with a dose of 2 × LD50 of P. salmonis. (�) Control fish
immunized with adjuvant; (�) fish immunized with formulation V1; (�) fish immunized with formulation V2; (�) fish immunized with formulation V3. The
curves represent the average cumulative mortalities of four tanks of fish and the standard deviation of each value is indicated as a bar.

Fig. 5. Western blot analysis of serum obtained from salmon immunized with recombinant formulations V1 and V2. (A) Blots containing purified Trx-Hsp70
(a), Trx-Hsp60 (b) and Trx-FlgG (c) tested with serum of fish immunized with V1 formulation (lanes 1–5) and serum of non-immunized fish (lane 6). (B) Blots
containing purified Trx-TbpB-N (d), Trx-MltB-C (e) and Trx-MltB-N (f) tested with serum of fish immunized with V2 formulation (lanes 1–4) and serum of
non-immunized fish (lane 5).

(V1) is composed of Hsp60, Hsp70 and FlgG. The sec-
ond group (V2) is composed of the amino terminal half
of TbpB and the carboxyl and amino terminal halves of
MltB. The third group (V3) is composed of the recombinant
carboxyl portions of Omp27 and FlaA. Oil in water emul-
sions of the three recombinant preparations were injected
intraperitoneally into Atlantic salmon of approximately
18 g. A saline-adjuvant control was also included in the
trial.

The result of the challenge experiment with a dose equiv-
alent to 8 × LD50 of P. salmonis is shown in Fig. 4A. As
expected, an increasing mortality was observed in the control
group. This effect began at day 2l post-challenge and reached
a cumulative mortality of 96% at day 49 post-challenge. In
the fish vaccinated with V3, the formulation elicited only a
mild protection, with a RPS of 10.4%. Fish vaccinated with
V2 exhibited a significant protective response with a RPS of
84.4%. The highest protective response was achieved with
V1, reaching a RPS of 95.8%. These results represent the
average mortality of each group of fish in the four tanks,
which behaved as consistent replica of the trial with minor
deviations (Fig. 4). As expected, the fish challenged with a P.
salmonis dose equivalent to 2 × LD50 achieved lower cumu-

lative mortalities (Fig. 4B), and the protective response of the
V1 group (RPS 94.4%) was similar and consistent with the
observed protection against the 8 × LD50 dose of P. salmo-
nis.

3.5. Immune response of salmonids against recombinant
proteins

Sera obtained at the end of the trial from four or five sur-
viving fish of each of the V1 and V2 vaccinated fish was
used to analyze the immune response against the recombinant
component of each formulation. Serum obtained from a non-
vaccinated and non-challenged fish was used as a negative
control. A measurable immunoreaction against the recom-
binant proteins of V1 and V2 was detected by Western blot
(Fig. 5), which is coincident with the ELISA immune reaction
previously reported [30,31]. The specificity of the immune
reaction elicited by the sera from V1 vaccinated fish was
confirmed by the positive reaction against Hsp60, Hsp70 and
FlgG previously excised of their thioredoxin fusion peptide
(results not shown). Interestingly, the humoral response of
V1-vaccinated salmon against recombinant proteins Hsp60,
Hsp70 and FlgG was still high 8 months post-vaccination
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(2800 degree days) as indicated by the immune reaction of
their sera in a Western blot (data not shown).

4. Discussion

Prevention strategies must consider the need for a good
cellular immune response to protect against the intracellu-
lar pathogen P. salmonis. In this respect, the most promising
strategies are DNA vaccines or recombinant protein vaccines.
In a first attempt using DNA vaccination against P. salmonis,
our laboratory utilized the expression library technology to
study the protection of coho salmon to the infection with P.
salmonis with very limited success [32]. In the present work,
we have concentrated our efforts on the recombinant pro-
tein subunit approach. In the case of bacterial pathogens,
the selection of key proteins is essential for this strategy
to succeed. We focused on molecules previously identified
as virulence factors and protective antigens in other bacte-
ria and associated with the bacterial surface. The available
partial sequence of the P. salmonis genome permitted us to
isolate and express genes to be tested as recombinant pro-
tein vaccines. Of the fifteen recombinant proteins, seven of
them included in this trial were selected according to the
protection conferred against other pathogens in a variety of
organisms [22,23,25,27], their location in the bacterial cell
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pathogen Vibrio vulnificus [34]. The expression of FlgG in P.
salmonis has been indirectly proven by the specific immune
reaction against FlgG of a serum from a rabbit immunized
with P. salmonis, and by the detection of transcripts encoding
this protein [Wilhelm et al., manuscript in preparation]. The
efficacy of vaccine V1 is also in agreement with the protective
effect elicited by Hsp60 and Hsp70 in other animal models
[23]. The strong immune reaction observed with our mono-
clonal antibodies against Hsp60 and Hsp70 in extracts from
P. salmonis can be correlated with the abundance of these pro-
teins during infection in other intracellular pathogens [35].
Additionally, Hsp60 and Hsp70 have been localized on the
periplasm as well as on the bacterial surface or as extracel-
lular secreted proteins during host infection [36–38]. The
surface location of the Hsp proteins as well as other properties
of these molecules have been suggested to play a signifi-
cant role in mediating attachment, invasion of host cells and
immune modulatory activities [39,40] that could explain the
strong protection elicited when the Hsp are included in vac-
cines. It has been proposed that the high conservation of Hsp
among various microbial pathogens generates an immuno-
logic memory for Hsp cross-reactive determinants during
life due to frequent restimulation by subsequent encounters
with microbes [23]. Consistent with this notion, the use of
Hsp in a vaccine has the advantage of eliciting an immune
response to conserved determinants shared by different bac-
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nd the immune response elicited in mice. The level of expres-
ion of these proteins in bacteria was also a factor considered.
wo of the formulations (V1 and V2) elicited a strong pro-

ection against P. salmonis.
In our trials, the highest protective response (95% RPS)

gainst P. salmonis was elicited by formulation V1, which
ontains the FlgG subunit of the basal flagellar structure and
haperonins Hsp60 and Hsp70. This result suggests that the
se of more than one recombinant antigen might potentiate
he immune response. However, given the varying degrees
f protection achieved with the different preparations, the
roper selection of antigens appears as crucial for success-
ul protection. The efficacy of formulation V1 was confirmed
y three independent challenges of Atlantic salmon, eliciting
elative percent survivals of 94%, 88% and 91% (data not
hown). This high level of protection in Atlantic salmon is
articularly important since this is the main salmon species
armed in Chile. This level of protection was also confirmed
n coho salmon by an independent research effort performed
y investigators from the company that licensed this technol-
gy, who obtained an RPS of 94.5% when vaccinated coho
almon were challenged with P. salmonis after 1000 degree
ays (personal communication).

Protein FlgG is a structural component of the flagella basal
ody [33]; a structure very similar to the needle complex of
he system III involved in the secretion of virulence factors
nd is present in flagellated and nonflagellated pathogens.
he components of the flagellar basal body are synthesized
y the flg operon. Recently it has been reported that they
lay an important role in the virulence and adhesion of the
eria, preventing colonization of the host by other microbial
athogens. Although a concern could exist regarding the use
f these conserved proteins in vaccines due to the risk of an
utoimmune response, the observed cross recognition of host
sp by reactive T cells has been proposed to play a role in

utoimmune processes only during chronic inflammation of
he host [23]. In fact, we detected no cross-reaction with Hsp
f the salmon embryonic CHSE-214 cell line with the anti-
odies against Hsp from P. salmonis (not shown). Similarly,
ntibodies against bacterial Hsp60 raised in mice cross-react
ith Hsp60 homologues of other prokaryotes, but not with

he murine Hsp homologues [23].
The protection elicited against P. salmonis by V1 is

lightly better than the protection of coho salmon reported
reviously for a recombinant vaccine composed of the 17 kDa
ntigen OspA [7]. In that report, an 83% efficacy was obtained
hen a quimeric protein of OspA and two T cell epitopes

TCE’s) from tetanus toxin and measles virus was used, while
ecombinant OspA alone had a protective effect with a RPS
f 30.2%. The increased efficacy of the OspA recombinant
accine conferred by these TCE’s, demonstrates for the first
ime the immunostimulatory effect of mammalian TCE’s on
he salmon immune system. One of the advantages of includ-
ng Hsp in the vaccine described in this paper is the natural
djuvant effect of Hsp60 by mediating a Th1 type immune
esponse [40] and thus favouring a cellular immune response
ithout the need for additional TCE’s. Moreover, the contin-
ous stimulation of the immune response by cross-reactive
eterminants among the conserved bacterial Hsp may be an
dditional benefit of this vaccine because it might generate a
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more lasting immunologic memory. Although long-term pro-
tection was not measured in adult fish in this study, reactive
antibodies against the recombinant proteins present in formu-
lation V1 were detected in sera of fish tested at 8 months post-
vaccination. Additional analysis of cellular immune response
should be considered to further explain the protective effect
of the vaccine against this intracellular pathogen, which will
be the focus of future research. In this regard, a protective role
of LPS and some E. coli antigenic proteins present in these
partially purified recombinant mixtures should not be ruled
out. Indeed, an efficacious induction of cellular immunity has
been demonstrated in the differentiation of helper T cells to a
Th1 phenotype by E. coli LPS in vivo [41]. This evidence
and the demonstration that salmon macrophages infected
with P. salmonis express immune genes corresponding to
those expressed by LPS stimulated human macrophages [42]
strongly argues for a positive protective effect due to the inclu-
sion of E. coli LPS in the recombinant vaccine reported here.

Formulation V2, which consists of the membrane transg-
lycosylase and transferrin binding protein B accomplished a
strong protection eliciting 85% RPS. The protective potential
of these two proteins is coincident with their immunore-
activity in Salmo salar [31] and their capacity to induce a
bactericidal activity [27,43]. Although only TbpB expres-
sion was analyzed, both proteins are significant determinants
of virulence and are highly expressed by bacteria during
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manuscript in preparation]. Detection of transcripts encod-
ing for some of the subunits of the flagellar structure suggests
the possibility that flagella may be synthesized under certain
conditions. This may influence transmission from one fish to
another during the short extra-cellular stage of P. salmonis in
seawater.
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